Universidad San Sebastián  
 

Repositorio Institucional Universidad San Sebastián

Búsqueda avanzada

Descubre información por...

 

Título

Ver títulos
 

Autor

Ver autores
 

Tipo

Ver tipos
 

Materia

Ver materias

Buscar documentos por...




Mostrar el registro sencillo del ítem

dc.contributor.author Rodríguez López, Lien
dc.contributor.author Bustos Usta, David
dc.contributor.author Alvarez, Lisandra Bravo
dc.contributor.author Duran-Llacer, Iongel
dc.contributor.author Bourrel, Luc
dc.contributor.author Frappart, Frederic
dc.contributor.author Urrutia, Roberto
dc.date.accessioned 2026-02-08T03:36:52Z
dc.date.available 2026-02-08T03:36:52Z
dc.date.issued 2025-11-17
dc.identifier.issn 2045-2322
dc.identifier.uri https://repositorio.uss.cl/handle/uss/20834
dc.description.abstract In this study, we analyze water-temperature time series was measured over 34 years, between 1986 and 2020, at the water surface at seven stations across Lake Villarrica (Southern Chile). The spring and summer seasons show an increment in the superficial temperature during the study period. The annual maximum temperature, ranging between 17.35 and 21.65 °C were observed in 1997 and 2009, respectively, while the annual minimum, ranging between 16.8 and 21.5 °C were observed in 2001 and 2009, respectively. In addition, we employ a machine learning based estimation model to predict surface temperatures in a South American lake spanning the period 1989 to 2021. Our model uses data in situ of physical, chemical, and biological parameters of lake quality water, along with meteorological data and spectral bands, including combinations of images from the Landsat 8 satellite, as input variables. The 7 lake monitoring stations were classified into 4 regions according to their geographical location: north, south, east, and west. Our findings demonstrate the exceptional performance of the long short-term memory (LSTM) model in accurately estimating temperatures across Lake Villarrica. The best results were obtained for the west region of the lake with good statistical metrics from the estimation model of RMSE = 2.79, Bias =−0.06, max error = 5.93, MSE = 7.83 and median absolute error (MedAE) = 2.13. This approach represents a significant advance in the integration of remote sensing and machine learning techniques to monitor and manage inland water systems. es
dc.language.iso eng
dc.relation.ispartof vol. 15 Issue: no. 1 Pages: 40091-40104
dc.source Scientific Reports
dc.title Predicting surface temperature in Lake Villarrica (Chilean Patagonia) using a long short-term memory model en
dc.title.alternative Predicción de la temperatura superficial en el lago Villarrica (Patagonia chilena) utilizando un modelo de memoria a corto plazo larga en
dc.type Artículo
dc.identifier.doi 10.1038/s41598-025-23937-5
dc.publisher.department Facultad de Ingeniería


Ficheros en el ítem

Ficheros Tamaño Formato Ver

No hay ficheros asociados a este ítem.

Este ítem aparece en la(s) siguiente(s) colección(ones)

Mostrar el registro sencillo del ítem