Universidad San Sebastián  
 

Repositorio Institucional Universidad San Sebastián

Búsqueda avanzada

Descubre información por...

 

Título

Ver títulos
 

Autor

Ver autores
 

Tipo

Ver tipos
 

Materia

Ver materias

Buscar documentos por...




Mostrar el registro sencillo del ítem

dc.contributor.author Maeda, Hideki
dc.contributor.author Martínez , Cristián
dc.date.accessioned 2026-02-18T13:30:01Z
dc.date.available 2026-02-18T13:30:01Z
dc.date.issued 2025-08-13
dc.identifier.issn 2470-0010
dc.identifier.other Mendeley: 940775ff-6dc6-3aa8-9f2d-25e26979c2d9
dc.identifier.uri https://repositorio.uss.cl/handle/uss/20875
dc.description Publisher Copyright: © 2025 American Physical Society
dc.description.abstract We investigate an exact two-parameter family of plane symmetric solutions admitting a hypersurfaceorthogonal Killing vector in general relativity with a perfect fluid obeying a linear equation of state p = χρ in n(≥ 4) dimensions obtained by Gamboa in 2012. The Gamboa solution is identical to the topological Schwarzschild–Tangherlini–(anti–)de Sitter Λ-vacuum solution for χ = −1 and admits a nondegenerate Killing horizon only for χ= −1 and χ ∈ [−1/3,0). We identify all possible regular attachments of two Gamboa solutions for χ ∈[−1/3,0) at the Killing horizon without a lightlike thin shell, where χ may have different values on each side of the horizon. We also present the maximal extension of the static and asymptotically topological Schwarzschild-Tangherlini Gamboa solution, realized only for χ ∈ (−(n − 3)/(3n − 5),0), under the assumption that the value of χ is unchanged in the extended dynamical region beyond the horizon. The maximally extended spacetime describes either (i) a globally regular black bounce whose Killing horizon coincides with a bounce null hypersurface or (ii) a black hole with a spacelike curvature singularity inside the horizon. The matter field inside the horizon is not a perfect fluid but rather an anisotropic fluid that can be interpreted as a spacelike (tachyonic) perfect fluid. A finetuning of the parameters is unnecessary for the black bounce, but the null energy condition is violated everywhere except on the horizon. In the black-bounce (black-hole) case, the metric in the regular coordinate system is C∞ only for χ = −1/(1 + 2N) with odd (even) N satisfying N?> (n − 1)/(n − 3), and if one of the parameters in the extended region is fine-tuned. en
dc.language.iso eng
dc.relation.ispartof vol. 112 Issue: no. 4 Pages: 1
dc.source Physical Review D
dc.title Exact plane symmetric black bounce with a perfect-fluid exterior obeying a linear equation of state en
dc.type Artículo
dc.identifier.doi 10.1103/lt5f-gqmw
dc.publisher.department Facultad de Ingeniería


Ficheros en el ítem

Ficheros Tamaño Formato Ver

No hay ficheros asociados a este ítem.

Este ítem aparece en la(s) siguiente(s) colección(ones)

Mostrar el registro sencillo del ítem