Temporalmente, el archivo digital asociado a esta publicación, no se encuentra disponible. Para más información escribir a [email protected]
Este documento se encuentra disponible en su fuente de origen, si desea acceder al texto completo, puedes hacerlo a continuación:
Author
Gutiérrez-Soto, Claudio; Galdames, Patricio; Palomino, Marco A. |
ISSN:
2504-2289 |
Language:
eng |
Date:
2024-06-03 |
Type:
Artículo |
Revista:
Big Data and Cognitive Computing |
Datos de la publicación:
vol. 8 Issue: no. 6 Pages: 1-19 |
DOI:
10.3390/bdcc8060059 |
Description:
Publisher Copyright: © 2024 by the authors. |
Abstract:
Deriving insight from data is a challenging task for researchers and practitioners, especially when working on spatio-temporal domains. If pattern searching is involved, the complications introduced by temporal data dimensions create additional obstacles, as traditional data mining techniques are insufficient to address spatio-temporal databases (STDBs). We hereby present a new algorithm, which we refer to as F1/FP, and can be described as a probabilistic version of the Minus-F1 algorithm to look for periodic patterns. To the best of our knowledge, no previous work has compared the most cited algorithms in the literature to look for periodic patterns—namely, Apriori, MS-Apriori, FP-Growth, Max-Subpattern, and PPA. Thus, we have carried out such comparisons and then evaluated our algorithm empirically using two datasets, showcasing its ability to handle different types of periodicity and data distributions. By conducting such a comprehensive comparative analysis, we have demonstrated that our newly proposed algorithm has a smaller complexity than the existing alternatives and speeds up the performance regardless of the size of the dataset. We expect our work to contribute greatly to the mining of astronomical data and the permanently growing online streams derived from social media Deriving insight from data is a challenging task for researchers and practitioners, especially when working on spatio-temporal domains. If pattern searching is involved, the complications introduced by temporal data dimensions create additional obstacles, as traditional data mining techniques are insufficient to address spatio-temporal databases (STDBs). We hereby present a new algorithm, which we refer to as F1/FP, and can be described as a probabilistic version of the Minus-F1 algorithm to look for periodic patterns. To the best of our knowledge, no previous work has compared the most cited algorithms in the literature to look for periodic patterns—namely, Apriori, MS-Apriori, FP-Growth, Max-Subpattern, and PPA. Thus, we have carried out such comparisons and then evaluated our algorithm empirically using two datasets, showcasing its ability to handle different types of periodicity and data distributions. By conducting such a comprehensive comparative analysis, we have demonstrated that our newly proposed algorithm has a smaller complexity than the existing alternatives and speeds up the performance regardless of the size of the dataset. We expect our work to contribute greatly to the mining of astronomical data and the permanently growing online streams derived from social media. |
The Institutional Repository of the Universidad San Sebastián gathers the academic and research papers prepared by the university community. Contributes to visibility and dissemination, to be consulted through open access by the entire national and international community.
The objective of the Repository is to store, preserve and deliver in electronic format, the results of institutional work, allowing greater visibility and dissemination through open and free access.