Temporalmente, el archivo digital asociado a esta publicación, no se encuentra disponible. Para más información escribir a [email protected]
Este documento se encuentra disponible en su fuente de origen, si desea acceder al texto completo, puedes hacerlo a continuación:
Autor(es)
Abdelkader, Mohamed; Ahmed, Emad M.; Mohamed, Emad A.; Aly, Mokhtar; Alshahir, Ahmed; Alrahili, Yousef S.; Kamel, Salah; Jurado, Francisco; Nasrat, Loai |
ISSN:
2032-6653 |
Idioma:
eng |
Fecha:
2024-08 |
Tipo:
Artículo |
Revista:
World Electric Vehicle Journal |
Datos de la publicación:
vol. 15 Issue: no. 8 Pages: |
DOI:
10.3390/wevj15080346 |
Descripción:
Publisher Copyright: © 2024 by the authors. |
Resumen:
Microgrid systems face challenges in preserving frequency stability due to the fluctuating nature of renewable energy sources (RESs), underscoring the importance of advanced frequency stabilization strategies. To ensure power system stability in situations where renewable energy significantly contributes to the energy mix, it is essential to implement load frequency controllers (LFCs). Moreover, with the widespread use of electric vehicles (EVs), leveraging battery storage from EVs for microgrid frequency control is becoming increasingly crucial. This integration enhances grid stability and offers a sustainable solution by utilizing renewable energy more efficiently and reducing dependency on traditional power sources. Therefore, this paper proposes an innovative approach to LFCs, using fractional-order control techniques to boost the resilience of the interconnected microgrid systems. The approach centers on a centralized control scheme with a tilt fractional-order integral-derivative featuring an accelerated derivative (TFOID-Accelerated) controller. The accelerated derivative component of this controller is tailored to mitigate high-frequency disturbances, while its tilt feature and fractional integration effectively handle disturbances at lower frequencies. As a result, the proposed controller is expected to efficiently counteract disturbances caused by variability in RESs and/or load changes, achieving a high level of disturbance rejection. Additionally, this paper employs the recent growth optimizer (GO) method for the optimal design of the controller’s parameter set, avoiding the need for complex control theories, elaborate disturbance observers, filters, and precise power system modeling. The GO algorithm enhances fractional-order capabilities, offering a robust solution to the challenges of renewable energy variability and demand fluctuations. This is accomplished by optimizing parameters and simplifying the control system design across different microgrid scenarios. The proposed TFOID-Accelerated LFC demonstrates superior performance in enhancing frequency stability and minimizing oscillations compared to existing controllers, including traditional proportional-integral-derivative (PID), PID-Accelerated (PIDA), and tilt-integral-derivative (TID) controllers. |
Ficheros | Tamaño | Formato | Ver |
---|---|---|---|
No hay ficheros asociados a este ítem. |
El Repositorio Institucional de la Universidad San Sebastián reúne los trabajos académicos y de investigación elaborados por la comunidad universitaria. Contribuye a la visibilidad y difusión, para ser consultados a través de acceso abierto por toda la comunidad nacional e internacional.
El objetivo del Repositorio es almacenar, conservar y entregar en formato electrónico, los resultados del quehacer institucional, permitiendo mayor visibilidad y difusión por medio del acceso abierto y gratuito.