Universidad San Sebastián  
 

Repositorio Institucional Universidad San Sebastián

Búsqueda avanzada

Descubre información por...

 

Título

Ver títulos
 

Autor

Ver autores
 

Tipo

Ver tipos
 

Materia

Ver materias

Buscar documentos por...




Mostrar el registro sencillo del ítem

dc.contributor.author Abdelkader, Mohamed
dc.contributor.author Ahmed, Emad M.
dc.contributor.author Mohamed, Emad A.
dc.contributor.author Aly, Mokhtar
dc.contributor.author Alshahir, Ahmed
dc.contributor.author Alrahili, Yousef S.
dc.contributor.author Kamel, Salah
dc.contributor.author Jurado, Francisco
dc.contributor.author Nasrat, Loai
dc.date.accessioned 2024-09-26T00:54:29Z
dc.date.available 2024-09-26T00:54:29Z
dc.date.issued 2024-08
dc.identifier.issn 2032-6653
dc.identifier.uri https://repositorio.uss.cl/handle/uss/14021
dc.description Publisher Copyright: © 2024 by the authors.
dc.description.abstract Microgrid systems face challenges in preserving frequency stability due to the fluctuating nature of renewable energy sources (RESs), underscoring the importance of advanced frequency stabilization strategies. To ensure power system stability in situations where renewable energy significantly contributes to the energy mix, it is essential to implement load frequency controllers (LFCs). Moreover, with the widespread use of electric vehicles (EVs), leveraging battery storage from EVs for microgrid frequency control is becoming increasingly crucial. This integration enhances grid stability and offers a sustainable solution by utilizing renewable energy more efficiently and reducing dependency on traditional power sources. Therefore, this paper proposes an innovative approach to LFCs, using fractional-order control techniques to boost the resilience of the interconnected microgrid systems. The approach centers on a centralized control scheme with a tilt fractional-order integral-derivative featuring an accelerated derivative (TFOID-Accelerated) controller. The accelerated derivative component of this controller is tailored to mitigate high-frequency disturbances, while its tilt feature and fractional integration effectively handle disturbances at lower frequencies. As a result, the proposed controller is expected to efficiently counteract disturbances caused by variability in RESs and/or load changes, achieving a high level of disturbance rejection. Additionally, this paper employs the recent growth optimizer (GO) method for the optimal design of the controller’s parameter set, avoiding the need for complex control theories, elaborate disturbance observers, filters, and precise power system modeling. The GO algorithm enhances fractional-order capabilities, offering a robust solution to the challenges of renewable energy variability and demand fluctuations. This is accomplished by optimizing parameters and simplifying the control system design across different microgrid scenarios. The proposed TFOID-Accelerated LFC demonstrates superior performance in enhancing frequency stability and minimizing oscillations compared to existing controllers, including traditional proportional-integral-derivative (PID), PID-Accelerated (PIDA), and tilt-integral-derivative (TID) controllers. en
dc.language.iso eng
dc.relation.ispartof vol. 15 Issue: no. 8 Pages:
dc.source World Electric Vehicle Journal
dc.title Frequency Stabilization Based on a TFOID-Accelerated Fractional Controller for Intelligent Electrical Vehicles Integration in Low-Inertia Microgrid Systems en
dc.type Artículo
dc.identifier.doi 10.3390/wevj15080346
dc.publisher.department Facultad de Ingeniería, Arquitectura y Diseño
dc.publisher.department Facultad de Ingeniería y Tecnología


Ficheros en el ítem

Ficheros Tamaño Formato Ver

No hay ficheros asociados a este ítem.

Este ítem aparece en la(s) siguiente(s) colección(ones)

Mostrar el registro sencillo del ítem